STUDIES ON 1-CARBADETHIACEPHEMS, PART I: SYNTHESIS OF 1-CARBADETHIA-2-OXOCEPHEM 4-CARBOXYLATE

C.W. Greengrass* and D.W.T. Hoople Pfizer Central Research, Pfizer Ltd., Sandwich, Kent, U.K.

<u>ABSTRACT</u>. The title compound has been prepared <u>via</u> the novel reaction of an acylmalonic ester with 4-acetoxy-2-azetidinone followed by phosphorane ring closure. A new enol-ether cyclisation giving 1-carbadethia-4-methyl-2-oxocephems is described.

Studies on penems and carbapenems¹ have shown that an acylamino side chain at C(6) is not essential for antibacterial activity in these systems. We believed that cephem analogues 1 might mimic penems or carbapenems, and also have antibacterial activity, providing that the β -lactam was sufficiently reactive and that a suitable 3-substituent (SR) was present. Although homothienamycin² 2 is a very weak antibacterial agent, suitable substitution at C(2) was expected to enhance the β -lactam reactivity and, we hoped, lead to useful antibacterial activity. 1-Carbadethiacephems 1 (X = CH₂) were selected for study rather than 1-oxadethia cephems³ (X = 0) or cephems⁴ (X = S) since the six membered rings of these latter classes are potentially hydrolytically labile when heterosubstituted at C(2). 7-Acylamino C(2)-functionalised 1-carbadethiacephems have been studied⁵ by other workers, but our target compounds, the design of which was influenced by natural carbapenems, had a thioether substituent at C(3) and thus belong to a new structural class. This communication describes the synthesis of the novel parent nucleus 3 having a suitable substitution pattern for further elaboration to a diverse set of targets.

Recently we described⁶ the reaction of 4-acetoxy-2-azetidinone⁷ with certain tertiary carbanions and we have now extended the scope of this reaction to prepare our key β -lactam intermediate. Dibenzyl malonate was acylated with 3-ethoxycrotonyl chloride⁸ to give

<u>11</u> R= PNB <u>12</u> R= Me

acylmalonate 4 which was isolated as the copper chelate 9 (m.p. 192-193⁰). This reaction was best accomplished by treatment of dibenzyl malonate with magnesium methoxide in tetrahydrofuran (THF) followed by removal of the solvent. The resulting toluene-soluble malonate salt was acylated in toluene at 0° and its copper salt prepared using cupric acetate. In this way a 46% yield was obtained on a 0.7M scale. 4-Acetoxy-2-azetidinone 5 reacted with 4 (copper chelate) in THF at 50° during 2 hours to give 6^{9} (83%, obtained as an oil after silicagel chromatography). Alternatively, the sodium salt of 4 reacted with 5 (NaH, THF, 0°) to give 6 in similar yield. The sodium salt method was generally more useful for other acylmalonate displacements we have studied. Hydrogenation of 6 (10% Pd/C, atmospheric pressure, THF) provided initially 7 which on continued hydrogenation gave the corresponding keto-acid which decarboxylated on warming to give azetidinone 8^9 (45%; m.p. 82-84°; λ max (EtOH) 259nm (ε 15,700); ν max (KBr) 1740, 1670, 1580cm⁻¹). (There was no evidence for saturation of the enol ether under these conditions, but the related compound 9 (R=Bz), similarly prepared using the sodium salt method, was unusable as an intermediate since olefin reduction competed with benzyl ester hydrogenolysis. The alternative acid-labile malonate ester 9 (R=tBu) suffered β -lactam cleavage during the deprotection-decarboxylation sequence).

Subsequent steps followed the approach devised for the synthesis of acylaminopenems¹¹, and involved reaction of <u>8</u> with <u>p</u>-nitrobenzyl glyoxylate (benzene, 80°, 5 hr), chlorination (SOC1₂,2,6-lutidine, THF, 0°, 1 hr) and treatment with triphenylphosphine (THF, 2,6-lutidine, 20°, 18 hr.). Silicagel chromatography afforded the phosphorane⁹ <u>10</u>, eluted with ethyl acetate (82%; m.p. 137-139°; ν max (CH₂Cl₂) 1750 cm⁻¹). Cyclisation was accomplished by ozonolysis of <u>10</u> (protected as its trifluoroacetate salt) in methylene chloride at -70° followed by reduction of the ozonide (Me₂S) and aqueous sodium bicarbonate workup to give <u>p</u>-nitrobenzyl l-carbadethia-2-oxocephem-4-carboxylate⁹ <u>11</u> (67%; m.p. 170-172°; λ max (EtOH) 320 nm, (£17400); ν max (CH₂Cl₂) 1794, 1740, 1680, 1590 cm⁻¹; δ (CD₃CN) 5.44 (2H, S CH₂Ar), 6.08 (H, S, C(3)-H); m/e 316 (M⁺), 275, 136, 95). An alternative, more direct preparation of <u>11</u> was subsequently devised and is described in the following communication.

Deprotection of <u>11</u> by hydrogenation (5% Pd/C, EtOAc-aqueous NaHCO₃, atmospheric pressure) gave the labile sodium salt <u>3</u> (m.p. 155^o dec., $v \max$ (KBr) 1760, 1635 cm⁻¹). In view of the instability of <u>3</u> it was characterised by conversion to its methyl ester <u>12</u> (MeI, DMF, 20^o, 18 hr.) obtained in low yield ($v \max$ (CH₂Cl₂) 1790, 1740, 1680, 1590 cm⁻¹; δ (CDCl₃) 3.91 (3H,S), 6.13 (H,S); m/e 195.052, C₉H₉NO₄ requires 195.053).

Biological evaluation of $\underline{3}$ showed a very low level of Gram positive antibacterial activity.

The chemistry of the enol ether <u>8</u> was also briefly examined. Treatment of <u>8</u> with strong acids (trifluoroacetic acid or methane sulphonic acid) induced cyclisation to give the 1-carbadethia-4-methylcephem⁹ <u>13</u> (43%; m.p. 62-64°; λ max (EtOH) 320nm (ε 13000); \vee max (CH₂Cl₂) 1780, 1660, 1600 cm⁻¹; δ (CD₃CN) 2.21 (3H, d, J = 1, CH₃), 5.23 (H, m, C(3)-H); m/e 151 (M⁺), 110). A related cyclisation occurred on treatment of 8 with pyridinium bromide

perbromide; in this case the product was the 3-bromo compound <u>14</u> (39%; oil; λ max (EtOH) 321 (ε 10500); ν max (CH₂Cl₂) 1780 cm⁻¹; δ (CDCl₃) 2.52 (3H, S).

Compound <u>11</u> has been a versatile precursor of our target compounds and these studies will be reported in due course.

Acknowledgement

We thank Professor M.M. Campbell (Bath University) and our Pfizer colleagues for stimulating discussions.

REFERENCES

- 1. For a recent review see A.G. Brown, J. Antimicrob. Chemother. 7, 15 (1981).
- T.N. Salzmann, R.W. Ratcliffe and B.G. Christensen, <u>Tetrahedron Letters</u>, <u>21</u>, 1193 (1980).
- 3. K. Prasad, H. Hamberger, P. Stütz and G. Schulz, <u>Heterocycles</u>, <u>16</u>, 243 (1981).
- 4. C.U. Kim, P.F. Misco and D.N. McGregor, <u>J. Med. Chem.</u>, <u>22</u>, 743 (1979).
 C.F. Ebbinghaus, P. Morrissey and R.L. Rosati, <u>J. Org. Chem.</u>, <u>44</u>, 4697 (1979).
 I. Ernest, <u>Helv. Chim. Acta.</u>, <u>62</u>, 2681 (1979); <u>63</u>, 201 (1980).
 D. Hagiwara, M. Aratani, K. Hemmi and M. Hashimoto, Tetrahedron, <u>37</u>, 703 (1981).
- A. Martel, T.W. Doyle and B-Y. Luh, <u>Can. J. Chem.</u>, <u>57</u>, 614 (1979).
 Kyowa Hakko Kogyo Co. Ltd. Belg. Pat. 875,053 (1979).
- 6. C.W. Greengrass and D.W.T. Hoople, Tetrahedron Letters, 22, 1161 (1981).
- 7. K. Clauss, D. Grimm and G. Prossel, Annalen, 539 (1974).
- 8. S.D. Brynes and L.R. Fedor, J. Amer. Chem. Soc., 94, 7016 (1972).
- 9. This compound gave satisfactory microanalytical data. Spectral data, where quoted, refers to most diagnostically useful signals.
- 10. We thank Mr. D.C. Mills for devising and optimising this procedure.
- I. Ernest, J. Gosteli, C.W. Greengrass, W. Holick, D.E. Jackman, H.R. Pfaendler and R.B. Woodward, J. Amer. Chem. Soc., 100, 8214 (1978).

(Received in UK 12 October 1981)